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We extend some relations between percolation and the dependence of Gibbs 
states on boundary conditions known for Ising ferromagnets to other systems 
and investigate their general validity: percolation is defined in terms of the 
agreement of a configuration with one of the ground states of the system. This 
extension is studied via examples and counterexamples, including the 
antiferromagnetic Ising and hard-core models on bipartite lattices, Potts 
models, and many-layered Ising and continuum Widom-Rowlinson models. In 
particular our results on the hard square lattice model make rigorous observa- 
tions made by Hu and Mak on the basis of computer simulations. Moreover, 
we observe that the (naturally defined) clusters of the Widom-Rowlinson model 
play (for the WR model itself) the same role that the clusters of the Fortuin- 
Kasteleyn measure play for the ferromagnetic Potts models. The phase trans- 
ition and percolation in this system can be mapped into the corresponding 
liquid-vapor transition of a one-component fluid. 

KEY WORDS: Percolation; Gibbs measures; nonuniqueness; anti- 
ferromagnets; hard-core models; Widom-Rowlinson continuum model. 

1. I N T R O D U C T I O N  

The low-temperature phases of matter can generally be thought of as small 
thermal perturbations of corresponding ground states. This is particularly 
simple for the case of a classical lattice system whose configuration is 
specified by {a(x)} with x on some regular lattice A a, and tr(x) a spin 
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variable taking one of a finite number of values for each x. Given a local 
interaction having a finite number (greater than one) of periodic ground- 
state configurations (PGSC), we can then take these PGSC as boundary 
conditions for the Gibbs measures in A, i.e., consider the Gibbs distribution 
at inverse temperature fl with boundary conditions given by a PGSC on 
A", the complement of some finite box A (see Section 2 for precise defini- 
tions). For fixed A and f l > 0  the boundary condition has a definite 
influence on the probability distribution of the spins in the bulk of A. In 
particular, in the limit fl ~ ~ ,  the Gibbs measure in A becomes concen- 
trated on the extension inside A of the PGSC imposed outside A. We are 
interested in knowing whether this influence persists for fl large but finite 
when we take the volume A to be macroscopic. In other words, is there an 
ordered state in the infinite-volume ( . 4 /~ r  system depending upon the 
PGSC imposed as boundary conditions on the finite box A? 

If there is such a m e m o r y  of the state with respect to boundary condi- 
tions at infinity, one sometimes calls the corresponding ground state ther- 
mally stable. The well-known Peierls argument provides such a result for 
the ferromagnetic Ising model and the Pirogov-Sinai theory t27) and its 
extensions study the genericity of this scenario. Under certain conditions, 
e.g., when there is a finite number of thermally stable periodic ground 
states, Pirogov-Sinai theory allows one to construct the low temperature 
phase diagram of the system (for review see Sinai, 132~ Zahradnik, t36) 
Bricmont and Slawny, ~8) and Slawnyt33~). 

In this paper we investigate the geometric or percolation picture of 
this memory effect, considered by many authors, t3~ to make precise 
the intuition that the influence of the boundary conditions must propagate 
via "interacting sites" from infinity to the center of the system in order to 
be relevant there. We are thus led to the question: in what sense is the 
finite-temperature state corresponding to a ground state accompanied by 
the presence of an infinite connected cluster on which the PGSC is 
realized? This question is fully answered at sufficiently low temperatures 
where the proof of the existence of different phases, determined by different 
PGSC boundary conditions, via the Peierls argument or Pirogov-Sinai 
theory actually proves that in each such phase there is such a cluster and 
there is no infinite cluster on which another PGSC is realized. Our interest 
here is therefore primarily the extension of well-known low-temperature 
results to higher temperatures where the Peierls and Pirogov-Sinai 
arguments fail. We are particularly interested in the question of whether, 
for two-dimensional systems, the existence of an ordered state at a finite 
temperature which corresponds to a (thermal) perturbation of a ground 
state is equivalent to the percolation in this state of that and only that 
ground-state configuration. This is known, for example, in the case of the 
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standard ferromagnetic Ising model without external magnetic field. As 
we show below, this picture extends to other models such as 
the antiferromagnetic Ising model, the hard-square model, and the 
Widom-Rowlinson model. A weaker statement is proven for the Ports 
model. However, we will also give examples (see Section 3.6 below) in 
which the existence of an ordered state does not imply percolation of the 
corresponding ground state. 

We emphasize that our setup is different from that in the Fortuin-  
Kasteleyn representation. Here the percolation clusters are defined directly 
in terms of the Gibbs state configuration. Therefore in general we do not 
expect to have direct relations between, e.g., correlation functions in the 
Gibbs state and corresponding percolation probabilities. Still we will see 
that for the model in Section 4 such a relation can in fact be established. 

In the next section we present the general framework. This is 
implemented by the examples of Section 3 in the case of lattice systems. 
Section 4 is devoted to the continuum Widom-Rowlinson model. 

2. GENERAL FRAMEWORK 

We present the notation here in the case of lattice systems. The con- 
tinuum model is contained in Section 4. 

The Lattice.  We restrict our attention to the d-dimensional lattice 
7/d, d>~ 2. This restriction is made for notational convenience and possible 
generalizations will be noted later. By x ~ y we mean that x and y ~ Z d are 
nearest neighbors. Given A c Z a, OA will denote the outer boundary of A, 
i.e., aA = {x ~ ZetA: y ~ x for some y ~ A}. In the sequel A is always a finite 
subset of 7/d. 

The Configuration Space. The single-site state space is denoted 
by S and it contains a finite number of elements (IS[ = q). An infinite- 
volume configuration a =  {a(x)}x~z, is an element of O = S  z~. A con- 
figuration a is periodic if there is a vector (kl ..... kd) ~ Z d with nonzero 
entries (k;4:0,  i= l , . . . , d )  such that if y = x + ( n l k ~ , . . . , n a k  d) for some 
(nl ..... ha) ~ Z d, then a(x)  = a(y).  

The Hamiltonian and Its Ground States. The translation- 
invariant Hamiltonian H consists (for definiteness) of the nearest neighbor 
interaction U: S x S --* • and the self-energy V: S --* R 

H ( a ) = H ( a ; J , h ) =  - J  ~ U ( a ( x ) , a ( y ) ) - h ~ ,  V(a(x))  (2.1) 
X ~ y  :r 
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in which the infinite sums are formal. The real parameters J>~ 0 and h in 
(2.1) play the roles of a coupling coefficient and magnetic field (or chemical 
potential). 

Consider a, ~/~ 12 such that or(x) = t/(x) for all x ~ 7/a\A, for some finite 
A c Z a. Then tr and q are said to be equal at infinity or one is an excitation 
of the other. Their finite relative Hamiltonian H(a  I r/) is then 

H(cr I rl) = - J  ~ [ U(a(x), a(y)) - U(q(x), r/(y))] 
X ~ y 

--h ~. [ V ( a ( x ) ) -  V(~/(x))] (2.2) 
x 

in which the sum is now only over a finite number of terms. A configura- 
tion q E O is a ground state if H(cr I q)1> 0 for any excitation ~r of q. The set 
of periodic ground-state configurations (PGSC) is denoted by g(H). We 
always consider the case Ig(H)] > 1. 

The  G i b b s  M e a s u r e .  Take ~/~ g(H). The finite-volume (A) Gibbs 
static with ~/ boundary conditions is the probability measure on the 
product space S A defined by 

1 
p'~..~(a A) = Z A(fl, tl-~ exp[ --fill(a" a [ q)] (2.3) 

for aAES A. In (2.3), f l > 0  plays the role of the inverse temperature, 
ZA(fl, r/) is the normalization constant, and 

o.~A(x ) = ~'aa(x) if x E A 
(r/(x) if x E A C = Z a \ A  (2.4) 

Observe that tr~ is an excitation of g. The infinite-volume Gibbs measure 
/z~ is obtained by taking the limit as A ~ Z d along suitable subsequences:/z~ 
is a measure o n / 2  endowed with the product sigma algebra (for details see 
Preston, t~-8) Georgii, t16) and Simon C 31) ). We remark that in general the 
limiting measure/z~ may depend on the subsequence; however, it is well 
known that this does not happen for a wide class of models at low tem- 
perature (in the realm of the Pirogov-Sinai theory) and in the cases we are 
going to consider we will show that p~ does not depend on the sub- 
sequence. We thus restrict ourselves to this case. By phase coexistence at fl 
we mean that " # p ~ g p  for some q, tr~ g(H). In general we will say that/~p 
is a Gibbs measure for the interaction U, V at the temperature p -1  if for 
all fmite connected subsets A, p p ( a l a ( x ) = q ( x )  for all x~y -a \A )=  
exp [ - f l n ( a ~  [ q)]/Zn(fl ,  r/) for all aa,/~p(dq)-a.s. 
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A g r e e m e n t  w i t h  t h e  PGSC. To understand the geometrical 
structure of such phases fix q~g(H) and the continuous map s,: 
/2--,{0, 1} z~ (/2 and {0, 1} z~ are endowed with the local topology) 
expressing agreement or disagreement with the ground state q 

(s,(a))(x) = {10 ifif a(X)a(x)#q(x)=q(x) (2.5) 

We denote by ,," - , , ~ - 1  the measure on {0, 1} za induced by the map sn. -# -- t*/~o,1 

Perco lat ion  of  t h e  Ground Sta tes .  Percolation is defined in 
terms of regular site percolation for the measure v~: for s e  {0, 1} z~ define 

C(s, oc)= { x e Za: s(x)=a} (2.6) 

in which 0t= 0, 1. Call C(s, a) the maximal connected component in (2.6) 
containing the origin of 7/a [C'(s, 0 c ) = ~  if s(0):/:~]. The probability of 
q-percolation (respectively non-y-percolation) in the phase with boundary 
condition q is defined as 

0~(ct) = v~( {s: IC(s, ~)l = ~ } )  (2.7) 

with a =  1 (respectively 0c=0). We have y-percolation, or agreement per- 
colation, (respectively non-y-percolation) if 0~(1) > 0 [ respectively 
0~(0)>0].  Observe that not having q-percolation in general does not 
imply having non-y-percolation, and having y-percolation does not imply 
not having non-q-percolation. 

A t t r a c t i v e  M e a s u r e s .  If S is (partially or totally) ordered (~>),/2 
is partially ordered ( ~ ) by defining a' )> a if a'(x) >1 a(x) for all x ~ 7/a. The 
order chosen for S may depend on the site x and, in the case of S = {0, 1 }, 
we will call standard order the one induced by setting 0 ~< 1 for all x. A 
measurable event A is said to be increasing if a cA and a ' > - a  implies 
a '~  A. A measure/z on /2  is attractive (FKG) if/z(A n B)~>/~(A)/z(B) for 
all A, B increasing events. (~4) Given two measures/z and/z',  we say that/z 
dominates/z' if for every increasing event A,/z(A) ~>/x'(A) (this is the so 
called FKG order of measures). 

We will consider the validity of the following three statements: 
(a) Phasd coexistence implies percolation, i.e., given q ~ g(H), then 

/2~:/:/z~' forsome q'~g(H)~O~(1)>O (2.8a) 

(b) When d =  2, percolation implies coexistence, 

0~(1) > 0,~/z~ :r for some q'~g(H) (2.8b) 



1384 G iacomin  et  al.  

(c) For d = 2 ,  regardless of the phase coexistence, there is no dis- 
agreement percolation, 

0~(0) = 0 (2.8c) 

For the models we will be dealing with, if d >  2, the statements (2.8b) 
and (2.8c) fail or they are expected to fail (see Aizenman et al. ~l~ and 
references therein). Statements (2.8a)-(2.8c) represent the best possible 
scenario, in which phase coexistence and percolation are equivalent. We 
stress once again that this scenario is not going to hold in general and we 
will produce counterexamples (even in d =  2). 

A tool in proving (2.8a) is the following: 

Theorem 1 (Bricmont et  al.(7)). In the notation of above, if 
there exists a bounded function f :  S--, R and a constant 6 such that 

f f(a(O)) B~(da) > 6 (2.9) 

while for all finite connected sets A containing the origin 

Iaf(a(O) ) p~(da [ s.(x) = 0  for all x ~  OA) <<.6 (2.10) 

then 0}( + 1 )i> 0, i.e., there is agreement percolation. 

Proof. This is just Theorem 2 of Bricmont et alJ 7~ with a change of 
notation. | 

In proving (2.8b) and (2.8c) we use the following theorem. Define 
Tie(x) = a ( x - e i ) ,  where e; is the unit vector in the direction i t  { 1,..., d}. 

Theorem 2 (Gandolfi e t  al.(ls)). If/ t  is a measure over {0, 1} ze 
which is attractive (with the standard order), invariant and ergodic under 
Ti, i = 1, 2, and invariant under reflection with respect to each axis, then if 
/z({s: IC(s, 0t)l = co})>0 ,  then/~({s: IC(s, 1-0~)1 = o o } ) = 0  for e = 0 ,  1. 

This theorem can be quite easily extended to cover more general cases 
than site percolation. In particular we will also use it in the absence of T~ 
invariance if the measure is Ti 2 invariant and ergodic ( i=  1, 2). Further- 
more, we will apply it to the case of bond percolation (see Section 3.4) and 
for continuous systems (Section 4). We will make the necessary remarks on 
the way. 
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3. LATTICE MODELS 

As already ment ioned in the introduction,  the case in which 
S = { - 1 ,  + 1 }, U(a, b, ) =  ab, and h = 0 (ferromagnetic Ising model)  is well 
understood. In this case g ( H ) =  {r/+, r/_} [ r / + ( x ) = + l ,  x~7]  a and 
r/_ = - r/+ ] and for p > p~ ( 1/pc is the critical temperature)  there are two 
distinct translat ion-invariant  extremal states obtained by taking r/+ and r/_ 
as boundary  conditions and the p roof  of the statements (2.8a)-(2.8c) can 
be found in Coniglio et alJ Jo~ 

3.1. Ising Antiferrornagnet 

77 a is bipartite, that  is, it can be split into two sublattices (in this case 
the points with even sum of coordinates 7/~ a and the ones with odd sum 7/,a,) 
such that  i f x ,  y e T / a ( o r  x,y~7/0a), t h e n x +  y -  Fix S = { - 1 ,  + 1 }  and 
take 

U(a, b) = - a b ,  V(a) = a (3.1) 

If Ih[ < 2dJ, then g(H)  = {r/e, r/o}, in which qe(X) = -I- 1 if X e Za~, qe(X) = 0 
otherwise, and r/o = -r /~  (see, for example,  Dobrushin  et alJ ~21). The phase 
transition in this model  has been studied by Dobrushin  cll~ and 
Hei lmannJ  19~ Because of the biparti te structure, flipping the spins on the 
even (or odd) sites makes  the model into a ferromagnetic Ising model with 
a staggered magnetic field, which is an F K G  Gibbs model. In particular for 
magnetic field h = 0, there is the usual Curie point  T,. (the critical tem- 
perature for the ferromagnetic model  above).  In other words p~" [as  well 
as p~~ and any other Gibbs  state with respect with the interaction (3.1)] is 
an F K G  measure with respect to the order relation a > -a '  iff a(x)r/~(x)>1 
a '(x)  r/e(x) for all x ~  7/a. A standard attractivity argument  on the finite- 
volume Gibbs measures implies that  p ~  and p~~ are well defined (independ- 
ent of  the way the infinite-volume limit is taken)  and that  i f p p  is a Gibbs 
measure with respect to the interaction (3.1), then "~ ~e p~ <~pp<~pp. For  a full 
account of these arguments  see for example,  Section 9 of  ref. 28. 

Proposition 3.1.  With the choices o f (3 .1)  in (2.1), for any h and 
any J~>0, statements (2.8a)-(2.8c) hold. 

Proof. We start by proving (2.8a). Take  r /=  r/e. For  any A contain- 
ing the origin, we have that i fp~"~p"p ~ 

v~"(s(O) = 1 [ s(x) = 0 for all x ~ OA) 

=p}e(a(O) = + 1 ] a (x)  = r/o(X), for all x ~ OA) 
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=#}~ = + 1 I tr(x) = r/o(X), for all x s O A )  

~< u~o(~(o) = + I)  

< ~ ( a ( o )  = + 1) 

= v ~ ( s ( O )  = + 1) (3.2) 

The first equality is a change of notation, the second one is the Markov 
property, and the last one is again a change of notation. The first inequality 
follows from the attractivity of the measure/.t~ ~. The second one is a conse- 
quence of /~o ~</~,, which implies that Iz~~ = + 1) ~</z~'(a(0) = + 1 ) 
and of the fact that if/z~~ = + 1)=/ t~ ' (o-(0)= + 1), then ,p,,'l . . . .  -,.p~" (see 
Theorem 1 in ref. 24), in contradiction with the assumption /,~o g:/l~,. By 
Theorem 1 we have (2.8a). 

In order to go on with the proof, let us make the following observa- 
tions [in what follows, if a statement contains the configuration q, it means 
that it has to hold for each r/~ g (H)] :  

1. ~'} is T 2 invariant. This follows from the fact that /1} is the 
monotone  (by F K G )  limit of a finite Gibbs state for the T~- 
invariant boundary  condition r / and  a T~-invariant interaction (in 
fact T,. invariant). 

2. ,," . . . .  "~ ~.p -~ .p  as it follows easily form the definitions and the fact 
that the infinite-volume limit is well defined. 

3. It~ is reflection invariant (with respect to each axis) because the 
interaction and the boundary  conditions are reflection invariant. 
Also v} is reflection invariant. 

4. lt'~ is T~ ergodic. In fact, by the observations on the F K G  proper- 
ties of p} made before stating the proposition, it is extremal in the 
space of T2-invariant Gibbs measure for the interaction (3.1) at 
the temperature ,6 -~ and hence ergodic under T~ ( i =  1, 2). 

5. v~ is T 2 invariant. This follows from the fact that T , 2 s ~ T ~ = s ~  
and observation 1, because 

- -  I 9 r /  2 

. v~ is T~ ergodic. In fact, if A ~ ( { 0 ,  1} z~) (is a measurable set) 
and A = T 7 2 A ,  then s ~ [ I A = T ~ s ~ t T T Z A = T ~ s ~ A ,  that is, 
s~- t A is T~ invariant. By observation 4 we conclude that v~(A) = 0 
or 1, that is, ergodicity. 
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7.. I f  p3"=lt3 ~ then P3 is T, invariant. This is a direct consequence of 
observation 2. 

8. v3"=v3~ I. This follows from the fact that s ,=T~s ,oT71  and 
observation 2, because 

_ ,,,Io~-I T71 =v3. TTI "#~'~ . . . .  --t"#'l~-I~ =/.t3~Tis~ 1 T71  --e'a ~ 

9. Define S: { 0 , 1 } z ~  {0,1} z~ as ( S ( s ) ) ( x ) = l - s ( x ) ,  for all 
s~{0,1} za and all x ~ Z  a. If #3"=lt3 ~ then v ~ ' S - I = v 3  ~ This 
follows from the fact that Ss~, = S~o, because 

 3os - '  = a 3 o s . ;  1 s - '  ' = o 

Let us now fix d = 2. By observations 3, 5, and 6, we see that v~ meets 
the requirements for Theorem 2, but T,. is substituted with T~. It is 
straightforward to modify its proof and extend the statement to the present 
case (as already observed by Klein and Yang(22)). 

To prove (2.8b) it suffices to show that if ~'a ''~ . . . .  -~'a,~" then 03o(1)=0. if 
03"( 1 ) > O, then, by the modified version of Theorem 2, 03"(0 ) = 0. By obser- 
vation 9, this implies that 03~ 0, which is absurd by observation 8. 
Hence 03'(1)=0. So (2.8b) is proven. Observe also that in this case not 
only 03"( 1 ) = 0, but also 03"(0) = 0 

In order to prove (2.8c), observe that we can restrict ourselves to the 
case in which ,,~' 4 ,,,~ because the other case has been considered above. t-%/ -r- ~ / ~ ,  

In this case it is enough to recall that, by (2.8a), 03(1)> 0, and hence, by 
the modified version of Theorem2, 03(0)=0 and this concludes the 
proof. | 

The results of Proposition 3.1 can be extended to more general bipar- 
tite lattices. 

3.2. Hard-Core Lattices 

The hard-core (or hard-squares) lattice model with activity 2 is 
defined by the infinite-volume limit (A/" 7/a) of the measure /~,A on the 
product space { 0, 1 } a 

x ( ~ ' )  ,l ~ 
#~'A(aA) = Zr(2, A) (3.3) 

In (3.3), ye{e, o} and r/e(X)= 1 i f x  is even, r/e(X)=0 i f x  is odd [~/o(X) = 
1--~/e(X) for all x]. further, NA=Y~x~ArrA(x) and a~ is defined in (2.4); 
Zr(y, A) is a normalization and for crs {0, 1} z~ 

X(a)={10 otherwiseif a(x) a ( y ) = 0  forall x ~ y  (3.4) 



1388 Giacomin e t  al.  

Fig, 1. A por t ion of a configurat ion of the hard-square  lattice gas. The squares  centered on 
odd sites are darker  than  the ones centered on even sites. In this figure there are three odd 
clusters and two even clusters. 

Hence the model can be seen as a gas of hard (i.e., nonoverlapping) 
squares (see Fig. 1) or diamonds with fugacity 2. Call C(r / )= 
U.,-: ,~.,-)= l O(x) [ O(x) = { y ~ Rd: Z ~  l [Y i -  xi[ = 1 } ] and denote by Co(r/) 
the connected component  of C(r/) that contains the origin (two squares 
touching at a corner are connected; see Fig. 1). There are clearly two dif- 
ferent types of connected components  of C: the ones for which the squares 
are centered on even sites and the ones for which they are centered on odd 
sites. We will call them type e and type o clusters, respectively. For  
y, fi E { e, o } define 

0](fi) =/z ]( { r/: Co(r/) is of type ~ and unbounded } ) (3.5) 

(3.5) is clearly the analog of (2.7). 
The hard-core model can be seen as a limit of the antiferromagnetic 

Ising model for fl ~ ~ and h --* 2dJ along fl(h - 2d J) = cotan 0 [0 ~ (0, n)] .  
The phase diagram point (2d J, fl = + ~ )  is highly degenerate, since there 
are infinitely many (in general nonperiodic) ground states. In this limit, 

Za 
map a ~ { - 1 ,  +1} --* z~ �9 �9 r/~ {0, 1} by setting r / (x)=  1 if a ( x ) =  - 1  and 
r / ( x ) = 0  if a ( x ) =  +1.  We get a hard-square model with activity 
2 = e x p ( - 2 c o t a n 0 )  (see Dobrushin et al. ~2~ for details. This picture 
suggests that the critical fugacity (if it exists) should correspond to 0c (see 
Fig. 2). We rephrase (2.8a)-(2.8c) into the following result. 
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Fig. 2. The expected phase diagram of the antiferromagnetic Ising model for d = 2. The 
shadowed area is the region of phase transition (this is only a qualitative diagram). The hard- 
square limit is obtained by taking J--* ov along the line with slope tan(0) shown on the figure. 
The phase transition for the hard-square model is expected to happen at 0 = 0~. 

P r o p o s i t i o n  3.2.  

Moreover ,  if d = 2, 

and 

Proof. 

F o r  the hard-square  model ,  

/2,~ 4:/t ~, = 0~(e) > 0 (3.6a) 

0~(e) > 0 r  ~ p ~  (3.6b) 

0~(o) = 0  (3.6c) 

Define the par t ia l  order  q'>-q if q'(x)>lq(x) for x e Z  d 
and q'(x)<~q(x) if x~Z d. It is easy to check that  /lx.A and its infinite- 
volume limit are attractive. The p roo f  is then the same of  the one of 
Propos i t ion  3.1. 1 

Remark. The mot iva t ion  for Propos i t ion  3.2 was provided  by the 
work of  Hu  and M a k  (2~ in which a similar result is conjectured on the 
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basis of computer  simulations. They discuss also the case of  hard-core par- 
ticles on a triangular lattice, the hard-hexagon model, c2~ Our  result 
extends easily to other bipartite lattices, such as the hexagonal one. The tri- 
angular lattice with nearest neighbor bonds is not  bipartite, so our  proof  
does not work. In view of  refs. 20 and 21, one expects that Proposit ion 3.2 
still holds for this model, but it is unclear to us, especially in view of  the 
results of the Section 3.4 on many-layer Ising models, whether Proposi-  
tion3.1 ( d = 2 )  holds for the whole domain of  coexisting phases of the 
antiferromagnetic Ising model on the triangular lattice [in this case, for 
h e (0, 6J), g(H) contains three configurations].  

3.3. Many-layer models 

Given a model with configuration space { - 1 ,  + l } Z a  and 
Hamiltonian H~, we can define a family of  new models indexed by integers 
Q>~2. Take S =  { - 1 ,  +1}  Q so that the infinite-volume configuration 

Zd 
is of  the form ~ = ( ( t r  I ..... a Q ) ~ S  [ to  be identified with 
{ - 1 ,  + l } Z ~ x  ..- x { - 1 ,  +1}  z (Q copies)].  Define the formal 
Hamiltonian as 

Q 

H(~) = ~ Hn(a~) (3.7) 
i=I 

,o _/zT~ ...  so that for boundary  conditions o9 = (r/~ ..... r/Q), p #. A - . #. A x • P 7.0#. A 
(where the subscript 1 refers to the system with Hamiltonian H~) is the 
finite-volume Gibbs state with respect to H. Observe that g(H)= (g(H~))Q 
(with the previous identification). 

Duplicated Ising Model.  Take Q = 2  and H~ as in (2.1), charac- 
terized by U(a, b)=ab and h = 0 .  As observed before, g ( H ~ ) =  {r /+ , r /_} ,  
and so g(H)  = { 09 + +, 09 + _ ,  o9_ +, 09 _ _ }, where o9 + + = (r/+, r/+ ) and so 
on.  

Proposition 3.3. For  the duplicated Ising model, statements 
(2.8a)-(2.8c) hold. 

Proof. We consider only the case r /=o9++ in (2.8). The other (three) 
cases are entirely similar. We want to estimate the expectation value of  the 
sum of the spins at the origin given that ~_(y)= (a~(y), a2(y)):/:(+ 1, + 1) 
for yeOA. In that case a~(y)+a2(y)~O for yeaA, so that, with the 
nota t ion/z(a(0))  = ~ a(0) p(da), we have 
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kt~'++(01(0) + 0-2(0) I so~+ +(~) = 0 on OA) 

1 
Y'. {z(o', + 0-~ .< 0) - -  a )+  + 

/z a (s,o++(~) = 0 on OA) .;,.;~ { - - 1 .  +1} 0.4 

x [/~'~,+a(0-,(0) 1 o1 = 0-'1 o n  oa) + #~,+a(0-2(0) I a2  = ~ o n  OA )] 

x / ~ + §  = (0-',(x), 0-~(x)), x~aA)} <~0 (3.8) 

as it follows from the fact that  

[/t'(.+a(0-,(0) I a l  = 0-'~ on OA) +/.d(+p(0-2(0) I 0"2  = 0-~- on OA)] 

~< [/~.*/~(0-1(0) [ Ol = o', on OA) +/~+p(o2(0) I 0-2 = --0-', on cOA)] = 0 

in which the inequality follows from the F K G  proper ty  and the last term 
�9 q +  q _  vanishes by symmetry.  On the other hand, tf It ~. p :#/~ 1. p, 

/.t;§ +(0-1(0) + 02(0)) -- 2m*(fl) > 0 (3.9) 

Apply Theorem 1 to get (2.8a) [no te  that  for the case r / = c o + _  one has to 
work in (3.8)-(3.9) with the differences 0-1(0) -02(0)  instead].  With regard 
to (2.8b) and (2.8c), it is s traightforward to see that  v ;  +§ = / l ;  +§247 is 
reflection invariant,  ergodic under translations, and attractive. Hence we 
can apply Theorem 2 and get (2.8b) and (2.8c), as we did before. I 

Remark. Note that  as the phase transition is second order 
[/l~+tj(0-(0)) - m*(/~) is continuous at fl =/~c], the density of  ( + 1, + 1) just 
below the critical temperature  is only slightly above 1/4 and still the 
( + ,  + )  spins percolate in the ( + ,  + )-state. 4 In the same way, the density 
of sites x ~  Z 2 where (0-1(x), 0-2(x))4: ( + ,  + )  is there only slightly below 
3/4 and still, in the ( + ,  + ) -  state, they do not percolate. 

The question therefore arises whether  one can go arbitrarily far and 
construct examples where there is percolation for arbitrarily low densities 
or where there is no percolation no mat ter  how large one makes  the den- 
sity. Such examples in fact exist (see, for example)  Molchanov and 
Stepanov126)), but they are rather singular. It  may  well be that a min imum 
density for having percolation actually exists for good Markov  fields. 

C o n j e c t u P e .  Given 1 2 = S  z~ ( [ S [ = q < o o ) ,  there is a constant  
c(d) > 0  (independent of q) such that for any translat ion-invariant  pure 
Gibbs state It on 12 for some translation- and rotat ion-invariant  nearest 
neighbor interaction, if p(o(O)=a)<c(d), then {x:0-(x)=a} does not 
percolate (a e S). 

4 The threshold for Bernoulli site percolation on 7/2 is about 0.59. 
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In particular, we know of no such Gibbs state in two dimensions 
where one has percolation of a spin value with density less than 1/4. We 
believe, for example, that there is no ( + ,  + ,  + ) percolation in the tri- 
plicated + 1 state/t ~.p + + . x/t  ~, p x/t  ~, p at temperatures close to the critical one. 
Obviously, in the conjecture, c(d)~ 0 as d--* ov [as does pc(d), the critical 
percolation probability for Bernoulli percolation ]. 

A result in the direction of the conjecture is the following. 

P r o p o s i t i o n  3.4. Take H~ of the ferromagnetic Ising model 
[ U(a, b)=ab] with h =0.  Take any/?, including f l>flc ,  for which there is 
phase coexistence. There is Q(fl, d) such that for all Q >/Q(fl, d) 

0~(1)=0  (3.10) 

for any ca e g(H). 

Proof. By direct computation 

( 1 +exp(1-4d~J) )Q m~xlt~((s,o(~))(x) = 1 [ ~(y) = ~'(y) for y~x)= (3.11) 

We can now take Q sufficiently large so that 

1 1 Q +exp(-4dflJ)) <pc(d)  (3.12) 

A standard domination argument concludes the proof {if d = 2, by using 
pc(2) > 1/2 and tic = (1/2J) log[ 1 + (x//2)], we get that there is a 6 > 0 such 
that if Q = 24, there is no percolation of the pattern ca if fl = tic + 6}. | 

Hence we have an example in which the measure is attractive, but 
nevertheless phase coexistence does not imply percolation. Of course 
Proposition 3.4 also holds for the many-layer version of other Markov 
fields. 

Remark. If in /t~ '§ there is with probability one some circuit aA 
around the origin on which the two coordinates agree, i.e., a~(y)=  a2(y), 
y~OA, then p~,p-p~,p'1+ _ ,i- (the effect of the boundary will be clearly canceled 
by conditioning on the circuit OA). In other words, if/t~ + 4:/~- (respec- 
tively, P1Ip :~/~"~,p for r/l , ;72 E.Q), there must be disagreement percolation in 
/z~ '+- (respectively in p~'px/112p) in the sense of van den Berg ~4) (see also 
van den Berg and Maes (6) for another coupling). Here disagreement per- 
colation means that there is an infinite cluster on which a~(x)4= tr2(x) [and 
does therefore not correspond to the notion introduced in (2.8c)]. 
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This is applied in van den Berg and Steil ~5~ for the hard-core model of 
above. They take independently two realizations (a~, a2) according to the 
product coupling p~xp~.  A site x~7/2 is a site of disagreement if 
a~(x) :~az(x). They prove that p~=p~  if only if p~ x p~({tr I, a2) has an 
infinite path of disagreement})=0. Using our general formulation, we 
make the following observation: i f / z ~ / z ~ ,  not only will we get disagree- 
ment percolation in the above sense, but in the state/z~ xp~ this percola- 
tion will be over sites x where 

(~l(X), ~ ( x )  ) = (q~(x), qo(X) ) 

= ( 1, 0) for x even 

=(0 ,  1) for x odd (3.13) 

The reason is that p]~-/~, is equivalent to /~•176176215 implying the 
stability in/~] • of the configuration (r/~, qo) as given in (3.13). 

3.4. The q -S ta te  Pot ts  M o d e l  

In this case S =  { 1 ..... q}. The Hamiltonian (2.1) is specified by taking 
J > 0 ,  h = 0 ,  and U(a ,b )=Oi fa=b ,  U ( a , b ) = - I  i f a r  

It is straightforward to see that g ( H ) =  {r/o: a s S } ,  where q~(x )=a  
for all xeT/d. 

A very useful way to analyze the Potts model is to take the FK- 
representation of Fortuin and KasteleynJ TM For that we let l(b)=0, 1 be 
a bond configuration. A bond b = <xy> is connecting nearest neighbors 
x ~ y e Z  a and it can be open [ l (b )=  1] or closed [ l ( b ) = 0 ] .  We will say 
that <x,y> c ~ A ~  i f x e A  or y e A  (or both). In A c Z  a we fix a bond 
configuration 1 by assigning to all bonds b = <xy> (connecting nearest 
neighbors x ~ y at least one of which is inside A) the value 1 or 0. For 
bond percolation see the definitions in Grimmett ~7) The event that 0 is 
connected to infinity through a chain of open bonds is denoted by 
{0~--, oo} = {0, I} za. We define the following expectation for functions 
f(crA) of the Potts model variables a A in the volume A with boundary 
conditions ~: 

1 <f>~a(l) = ~ : ~ Z f  (O'A) H 6(o'S(x), a i ( y ) )  (3.14) 
trA <xy> ~ A  ~ O :  l<x,y> = 1 

Here 6 is the Kronecker delta, and n~(l) is the number of connected 
/-clusters in the volume A so that the expectation (3.7) is normalized. The 
configuration trea is defined as in (2.4). The reason for introducing (3.7) is 

822/80/5-640 



1394 Giacomin e t  al. 

that the Potts model expectations in volume A with boundary conditions 
can be written as 

1 
~I Pl~(1--P)l-tb q '"(I)( f )  CA(l) 

/'t~'A(f) =Z~(fl, ~) , b,~A*O 
~__. F K  --V q, p,A( ( f >  A(" ) ) ( 3 . 1 5 )  

when we put p = 1 -  e -/~J. Here Vq.p. AVrr denotes the finite-volume Fortuin-  
Kasteleyn measure (or random cluster measure) on the bond configura- 
tions whose weights are defined by (3.15). Note that implicit in our defini- 
tion is the boundary condition for the FK measure: using the terminology 
in Aizenman et al,(2). Vq.p. Aw.  is the finite-volume FK measure with wired 
boundary conditions. The infinite-volume limit of Vq,VKp. A will be denoted 
by Vq.p." v~ (2.17.18) 

P r o p o s i t i o n  3.5. For the Potts model, (2.8a) holds. Moreover, if 
d = 2  and p ~ p ~ '  for q,~l'eg(H), then 

0~(0) = 0  (3.16) 

and obviously also 

oi'(o) =o 

Proof. (2.8a) is easily proven by using the formula 

#~o(a(0) = a) = 1 + ( ~ _ ~ )  ~K q Vq, p({O~--~oo}) (3.17) 

[see Theorem 2.3, formula (2.19), in Aizenman et aLt2); see also Fortuin 
and Kasteleyn t~3)] and that given the coupling between tr and l implicit in 
(3.14) and (3.15), tr(x)=a if x belongs to one of the bonds in the infinite 
cluster of open bonds. By (3.17) the latter exists a.s. in the coexistence 
region, because there iz~"(tr(O)=a)>l/q [Theorem2.4, part (b), in 
Aizenman et all2)]. 

z~ associated to the To prove (3.16), let us consider the FK measure Vq.p 
extremal Potts measure p~~ The Vq. pFK is translation invariant [Theorem 3.1, 
point (a), in Grimmett (ls~] and ergodic under translations [Theorem 3.1, 
point (c), in Grimmett(17)]. Moreover, it is known that this measure is also 
attractive.(13,2,17,18) The reflection invariance is easily proven with the same 
argument used in the proof of Proposition 2.1 for the same property, 
because F K  �9 Vq. p is FKG. A straightforward adaptation of the main theorem in 
Gandolfi et aL ~]51 to the case of bond percolation allows us to conclude 
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that if there is percolation of open bonds, outside any box containing the 
origin there is a circuit of open bonds surrounding the origin (a.s.). Again 
by the coupling between a and /, we have that if 0"~ 0, then/l~~ 
every point is surrounded by a circuit on which or(x)=a. By (2.8a) we 
conclude. | 

Remark. Note that in d = 2  for q > 4  the "magnetization" 
/d({tr: t r (0 )=a} )  is believed to be discontinuous at fl =tic. -t3) Therefore, in 
the two dimensional Potts model the lowest density of a ground-state con- 
figuration for which we know there is percolation is 1/4 + e  (for arbitrary 
e > 0) and is obtained for q = 4 in the corresponding Gibbs state just below 
the critical point )  

3.5.  W i d o m - R o w l i n s o n  L a t t i c e  M o d e l  

The statements (2.8a)-(2.8c) hold also for a class of models first intro- 
duced in Wheeler and Widom. ~34) They are "spin-l" models with single-site 
state space S = { - 1 , 0 ,  +1} and Hamiltonian (2.1) determined by 
U ( a , b ) = a b ( 1 - a b ) ,  V (a )=a  2, O<<,J<oo, and h > 0 .  This model was 
shown to have a phase transition by Lebowitz and Gallavotti (23) and to 
be attractive by Lebowitz and Monroe. (25~ 

The detailed analysis of these models follows along standard lines. 

4. C O N T I N U U M  M O D E L  

The continuum Widom-Rowlinson (WR) model (35) consists of par- 
ticles of type A and type B having positions in R a and fugacities ZA and ZB, 
respectively, whose interaction consists of the hard-core constraint that the 
centers of any two particles of different type must be at least distance R 
from each other. Cassandro et aL 19) show how this model can be obtained 
from a lattice model of the type described in Section 3.5. 

More precisely, we take A cff~ d a finite Borel set and let 
x = (xl ..... XNA) [respectively y = (yl ..... YJvB, where NA and NB are positive 
integers, denote the position of particles A (respectively B), xj,  y i e A  for 
i =  1 ..... NA a n d - j =  1 ..... NB. Call g the space of a a-finite integer-valued 
measures over A (and its Borel sets); our probability space will be 
12 = X x  Y ( X =  Y will have the topology of weak convergence, that charac- 
terizes its Borel sets). By separability, any element of X can be written as 
~i~tfi.~, ( l c 7 / ,  I I I <  oo) and so we will use the notation NA(Og), NB(co), 

5 This is similar to the case of duplicated Ising variables; see example 3.3. 
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x(og), and y(co) for toe /2  with obvious meaning. The constraint that is 
imposed is determined by the hard-core length R: 

min Ixe- yjl > R (4.1) 
i , j  

Letting I [x , y ]  denote the indicator function corresponding to (4.1) 
(I: AZV^xAN"~ {0, 1}), we put 

A fA d2nA(X) d2N,(y) I[X, y] (4.2) 
Z N A ,  NB ~ NA x ANB 

for d2N(X)=dax, . ''ddXN the N-product Lebesgue measure. Fixing the 
fugacities ZA, ZB>0, we then have for the grand canonical partition 
function of the WR model 

-NA ~NB 
~ = 2 ( A ,  ZA, Zs)=  ~ -~A ~ B Z A (4.3) 

NA,  N B  NA ! Ns ! NA, N. 

We will be mostly interested in the case z A = Z B = Z, for which we adopt the 
notation ~(A, z). 

So far we have not spoken of boundary conditions. Obviously we can 
fix the position of some particles by introducing extra constraints [beyond 
(4.1)]. For example, we speak of boundary conditions of type A if we 
replace I [ x , y ]  in (4.1) by IA[X,y] = I [ x , y ]  iA[y] ,  where iA [y ]  is the 
indicator function corresponding to 

inf lyj-xl > R (4.4) 
j ,  xc~A c 

Analogous definitions and notations apply for boundary conditions of type 
B. The grand canonical partition function is then changed into 2~,, corre- 
sponding to the boundary conditions of type y = A, B. 

The finite-volume Gibbs measure p ~ for-boundary conditions ~, = A, B 
gives the probability of finding the particles in certain regions of A. If we 
condition on having NA type A particles and NB type B particles in A, the 
random field will have density 

), 
dPa(" )l N^.o)= N ,̂ W~(o~) = 1 .N^ .N. 

daN^Xd2N, U"(oo) Z a ~A ~-a It(CO) 
NA, NB NA ! NB ! 

(4.5) 

in which I~,(co)- Ir[x(co), y(co)](co e/2) and analogously for l(w); see (4.1). 
The infinite-volume measures are denoted by/a y and can be obtained as a 
limit from / ~  as A z R u. The existence of such a limit as well as other 
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properties of the limiting measures are proven by Cassandro eta/. (9) and 
Lebowitz and Monroe/25) The measure pr does depend on the boundary 
condition ), if ZA = ZB = Z and z is sufficiently large, t29) Analogously, define 

as the infinite-volume limit of].tA, defined as in (4.5) with I~.(co) replaced 
by I(co). 

Clusters and Percolation Probability. Define the function 
Sp: A x {co: I(o))= 1} ~ {A, B, W} as 

B if dist(x(o~), {x} ) < R/2 
Sp(x) = Sp(x, w) = if dist(y(co), {x} ) < R/2 (4.6) 

otherwise 

We can imagine the function Sp coloring the volume A in red (A), black 
(B), or white (W). From now on take 7, ~e  {A, B}. The ~, cluster at the 
origin [C~ will then be defined as the connected component of 
Sp(., co)- ~(7) that contains the origin [ C~ ~ = ~ if Sp(O)# ?]. The percola- 
tion probability is thus defined as 

0'(6) =/2'({ co: diam(C~ = oo}) (4.7) 

Proposition 4.1. Using the notations and definitions above with 
.7 ~ Z A ~ Z B ,  w e  have 

/~A(Sp(0) = A) --IzB(Sp(O) = A) = 0A(A) -- 0A(B) (4.8) 

implying 

0A(A) > ~ p A  #pB (4.9a) 

In d = 2 ,  

0A(B) = 0 (4.9b) 

and 

0A(A) > 0 ~,~pA #/~B (4.9c) 

Remark 1. (4.8) says that the particle clusters in the WR model play 
a similar role to the random clusters in the FK representation of the Ports 
model. We believe this to be the first example where such a direct relation 
between the 'order parameter' and the cluster geometry is found. Note also 
that by attractivity ~25~ the left hand side of (4.8) is zero if and only if the 
A phase is different from the B phase. 
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Remark 2. We believe that the results in the proposit ion partially 
extend to the case where a hard-core condition is added between alike par- 
ticles. The problem is that in that case the WR model loses the F K G  
property (defined for this model below) and, even if the core of  the argu- 
ment does not rely at all on attractivity, not  having F K G  would require 
extra technicalities related to the existence of  infinitely volume-limits. 

Remark 3. So far we have assumed for simplicity that the fugacities 
of  the two types of  particles are equal, ZA = ZB = Z. Note, however, that if, 
says z A>/z, then A A p_.^,= stochastically dominates p_._., where we now 
explicitly indicate by subscripts the fugacities of A-type, respectively B-type, 
particles. This implies that if in /~_ ,  there is percolation of  A-type particles 
(as in the phase coexistence regime, z > z,.), then we get the same result for 
all A-particle fugacities z A/> z. Suppose we now integrate out the positions 

Fig. 3. A portion of a configuration of A (darker) and B (lighter) particles. There is an A 
cluster at the origin and it is separated from the other clusters by a white layer. 
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of the B particles. A simple calculation shows that we get a new measure 
for the A particles where now z (previously the fugacity of the B particles) 
plays the role of an inverse temperature. In that measure, for z > zc, the A 
particles percolate for all values ZA >/Z. 

Idea of  the Proof. Consider an A cluster covering the origin. If it is 
bounded, then, by the hard-core constraint, there is necessarily a white 
region surrounding it; see Fig. 3. This effectively screens the origin from the 
external boundary condition. Therefore this contribution to the probability 
of having an A particle at the origin is the same in all states (i.e., regardless 
of the boundary conditions). What remains is the probability that the A 
cluster extends infinitely far. This idea can be most easily implemented 
through a discretization of the space. 

Proof of  Proposition 4.1. First we recall the result by Lebowitz and 
Monroe, t25) which says that /~ is attractive with respect to the order >-, 
co>-co' if Sp(x, co)>~Sp(x, co') for all x e R  d (the order in {A B, W} is 
A~>W~>B). 

Take A ' c  A c R d two spheres. Define the finite-volume percolation 
probability as 0~'(6; A, A ' ) = / ~ ( C ~  # ~ )  and by definition that 

lim lim O>'(6;A,A')=O~'(O) 
A '  ~, ~ ,t A ,.. R d  

(4.10) 

By the FKG property of/1 it is straightforward to see that the limits in 
(4.10) exist and that this limit can be computed in several other ways, for 
example, O~'(6)=limR_~.O~'(,~;A(R),A(R/2)), where A(R) is the ball of 
radius R. Take e > 0 small and cover R d with a grid of spacing e. Disregard- 
ing boundary problems, this naturally defines a partition of R d into squares 
of sidelength e (e-squares). To control the errors made by the space dis- 
cretization, we define 

G(e) = {co: dist(x, y) > R + 6de, Jdist(x, OA') - RI > 6de, 

[dist(y, OA') - RI > 6de, 

[Ixi--Xk]--RI >6de, i v~ke  { 1,..., NA(CO)} } (4.11) 

A simple argument by contradiction yields the existence of AA(e)>~0, 
vanishing as e ,L 0 and such that 

/.t](G(e)) > I - AA(e) (4.12) 

with ~,e {A, B}. 
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The union of a finite number of e-squares is an e-cluster at the origin 
if the interior of this set is connected and if it contains the origin. Denote 
by ~, the set of e-clusters at the origin ( ~  e cd,). 

We are now going to define a subset of s characterized by having a 
certain element of cd, as minimal e-covering of the corresponding maximal 
cluster at the origin. More precisely, given C ~ ~, define 

~r = {co: C~ c Cand for all C'Ec#~, C'~C, C~ r C'} (4.13) 

[-Recall that C~ is defined right before formula (4.7) and it denotes the 
original cluster at the origin, with no discretization. ] We have then by con- 
struction that the probability to find an A particle at the origin is 

/~](Sp(0) = A) = ~ /~ ](~r C)) + y '  /~ ] ( d j  C ) ) ( 4 . 1 4 )  
C ~ O A ' = O  C ~ 0 A ' r  

where the sums are over C~Cd(e). We deal with the two terms in the right 
hand side of (4.14) separately. 

First of all observe that by (4.12) 

C,"~OA'=O C ~ O A ' = ~  

~<2,da(e)+ ~"c(IZA(.~.cJC)nG(e))-12~(.~eJC)nG(e))) (4.15) 

Define c~Cw to be that subset of f2 such that Sp(x, co) = W for all x con- 
tained in an e-square adjacent to the outer boundary of C~cd, (that is the 
external connected component of the boundary). Since ,~',(C)c'~G(e)c 
~r c~ 0Cw we can continue (4.15), obtaining 

E ~(~(c) ) -  F~ ~(~(c)) 
C,'-,t~A'= O Cca~A'= O 

<.,.4.4A(e)+~llz~(~(C)c~OCw)-t.t~(~(C)c~OCw)l (4.16) 
C 

By the Markov property of the/.t~ the sum in the right-hand side of (4.16) 
is zero. This is because by conditioning it is straightforward to see that 
every term in this sum is equal to 

~A(~(C) IOCw)/~A(I* OCw) ~A(aCw) 
/zA(I*) 

Iz'~(~(C) lOCw)~'JISlOfw)~A(OCw)=o (4.17) 
/~A(I s) 
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where p~ corresponds to the Gibbs distribution with free boundary condi- 
tions. The last equality follows because of the symmetry under exchange 
A ~ B. Hence 

a ;  pA(~r -- ~ /t ~(~r ~< 4A.~(e) 
C c~ = 1 2 I  C ~ 0.,1' = 0 

(4.18) 

The absolute value of the difference between the second term in the 
right hand side of (4.14) and OA(A;A,A ') is, by the definition (4.11) of 
G(e), smaller than A.de). Combining this with (4.18) and writing (4.14) 
also for the measure/L~, we get 

I~ ~(Sp(O) = A) -p~(Sp(O) = A) + 0B(A; A, A') - 0A(A; A, A')I ~< 6AA(e) 
(4.19) 

Hence the left-hand side of (4.19) is zero. The result (4.8) follows by taking 
the limits as indicated in (4.10). Condition (4.9a) follows from (4.8) and 
Remark 1. 

In the case of two dimensions (d = 2), we use a generalized version of 
Theorem 2, extending the statement without difficulty to the continuum. 
This ensures that if 0A(A)>0, then 0B(A)=0 and then [by (4.8)] that 
pA q:pB. If 0A(A)=0, then the right-hand side of (4.8) is zero (by FKG) 
and so pA(Sp(O)= A)=pa(Sp(0)=  A), which (as remarked above) implies 
that pA=pB. II 

Note: After the completion of this work, we learnt that J. T. 
Chayes, L. Chayes, and R. Koteck~ have obtained results similar to those 
of Section 4 of this paper [J. T. Chayes, L. Chayes, and R. Koteck~, The 
analysis of the Widom-Rowlinson model by stochastic geometric methods, 
Preprint ( 1994)], 
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